Growth and reproductive traits of F1-generation transgenic goats for human granulocyte-colony stimulating factor

A Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University, Av. Dr Silas Munguba, 1700 – 60714-903, Fortaleza-CE, Brazil.
B Faculty of Veterinary Medicine, School of Health Sciences, Grande Rio University, Rua Prof. José de Souza Herdy, 1160 – 25071-202, Duque de Caxias-RJ, Brazil.
C Corresponding author. Email: ribrio@yahoo.com.br

Abstract. To ensure that animal welfare requirements and phenotypic characteristics of the newly produced transgenic lines are not compromised, an evaluation of all individuals is necessary. This can be inferred by the analysis of the growth and reproduction parameters. The present study was designed to determine the impact of the insertion of human granulocyte-colony stimulating factor (hG-CSF) transgene on growth and reproductive characteristics in first-generation (F1) goats from two transgenic lines. Bodyweight (BW) development (BW at birth, mean BW gain before weaning, BW at weaning, mean BW gain after weaning, BW at puberty), as well as reproductive parameters (age at puberty, ejaculate volume, concentration, total sperm per ejaculate, massal motility, progressive individual motility, major and minor defects) were similar (P > 0.05) between transgenic (T) and non-transgenic (NT) goats. Significant (P < 0.05) differences in mean (±s.d.) white blood cell count were observed between T and NT in first day of life (174.6 ± 14.7 x 10^3 and 15.0 ± 4.0 x 10^3 cells/µL), and during (66.8 ± 21.1 x 10^3 and 17.0 ± 4.6 x 10^3 cells/µL) and after (36.6 ± 4.0 x 10^3 and 15.5 ± 2.2 x 10^3 cells/µL) suckling, even though hG-CSF has not been detected in blood serum in any analysis. Although other cell counts were occasionally higher in T animals, differential counts showed that this difference was mainly due to an increased number of neutrophils, which represents 84.6%, 67.2% and 56.8% of total white blood cell count respectively, in the three time periods. Kidney and liver biochemical analyses indicated that all goats were healthy. Thus, it is possible to assume that all animals are normal and had no deleterious effects on either growth or reproductive parameters by the presence of transgene or as a consequence of leukocyte profile alteration.

Additional keywords: neutrophilia, puberty, welfare, white blood cell.

Received 27 August 2016, accepted 19 December 2016, published online 8 March 2017

Introduction

The production of transgenic farm animals containing exogenous DNA stably incorporated into their genome, when able to be transmitted to their offspring in a Mendelian fashion, has several applications. Besides the obvious scientific interest for the study of genes and their regulation, transgenic animal technologies have been proposed as a method to accelerate livestock improvement, by means of introducing new genes or modifying the expression of endogenous genes that regulate traits of economic importance (Wheeler 2003) and the production of recombinant proteins (Lavine 2009).

Although there is a continuous and remarkable development in transgenic technology, the consequences of genotypic changes induced by this type of experimental mutation cannot be completely predicted. This is especially true for the majority of transgenic animals that are generated by pronuclear injection. Randomly integrated foreign DNA may increase the risk of disruption of endogenous genes (Jackson et al. 2010) and disturb normal physiological processes, possibly resulting in discomfort, which is crucial to animal welfare (Mertens and Rulicke 2007). Additionally, an inappropriate control of transgene expression could lead to overexpression or expression in undesirable tissues (Pursel et al. 2004). Thus, several studies have reported physiological (Pursel et al. 1990) and reproductive (Maleszewski et al. 1998; Bryla et al. 2010) disorders in transgenic animals.

Certainly, the health and welfare of transgenic animals raised for production purposes is of central importance to potential consumers and producers (Jackson et al. 2010). Animal welfare is a concept that involves both physical and subjective evaluations of individuals (Duncan 2005; Mertens and Rulicke 2007). The physical aspects of general health, as standard measures of body development and reproductive fitness, such as semen quality and age at puberty, can be used as indicators of transgenic-animal health (Jackson et al. 2010). Another key indicator of health in living organisms is their ability to grow from birth to adulthood in a way similar to young individuals of the same species and breed. Van Reenen (2009) suggested that...
the study of a transgenic line should be performed not only during the period of transgene expression, but also at different stages of life, including pregnancy, birth, puberty and adulthood.

Our group reported the production of a couple of transgenic goats (10M and 12F lineages) containing human granulocyte-colony stimulating factor (hG-CSF) fused to goat α-S1 casein (CSN1S1) promoter produced by pronuclear injection (Freitas et al. 2012). This protein acts in the prevention of febrile neutropenia and, currently, is recommended for patients with substantial risks to stimulate the proliferation and differentiation of granulocytic lineage cells (Crea et al. 2009). The female founder (12F) successfully expressed the recombinant protein in her milk and at a concentration that was compatible with commercially viable investments (Moura et al. 2013). Moreover, the hG-CSF transgene was transmitted by Mendelian fashion to first-generation progenies (F1) from both lineages (Freitas et al. 2012; Moura et al. 2014). However, according to Mertens and Rulicke (2007), to ensure transgenic-animal welfare requirements, a careful phenotype characterisation and welfare assessment has to be undertaken routinely for each newly produced lineage, at individual and lineage level, starting by the standardised monitoring of founders and their consequent generations.

The present study was designed to evaluate the impact of the insertion of hG-CSF transgene in F1 goats derived from two transgenic lineages, in comparison with non-transgenic controls from their birth to 10 months old, on bodyweight development, reproductive parameters such as age at puberty and semen quality, leukocyte profile, hepatic and renal function analysis, and ectopic expression for the protein in blood serum.

Materials and methods
Animal ethics and biosecurity
All protocols used in the study were approved by the Committee of Animal Ethics (09144595-7/50) of the State University of Ceará and Brazil’s Biosafety Technical National Committee (CQB 0228/06) to work with genetically modified organisms. Additionally, all experimental procedures were conducted according to the guidelines for the ethical use of animals in research (ASAB 2006).

Location and experimental animals
The experiment was conducted in the Laboratory of Physiology and Reproduction Control of the State University of Ceará, Fortaleza (3°43’47”S, 38°30’37”W, ~15 m above sea level). For F1 generation, animals from both transgenic (T) lineages (12F and 10M) were mated with non-transgenic (NT) goats. In total, nine experimental animals of Canindé breed were used as the negative and positive controls respectively.

Experimental conditions
After birth, all animals (T and NT) received suckling up to 3 months of age when weaning was performed. Before weaning, once a day for a period of 5 h, the animals were separated from their mothers and kept in another pen, where they had free access to water, Tifton (Cynodon dactylon) hay, commercial concentrate (Fri-Ribe, Teresina, Brazil) and mineralised salt licks. After this period, animal diets were supplemented with 0.2 kg/day of the concentrate mentioned above, with Tifton hay, water and mineralised salt licks ad libitum.

Assessment of bodyweight (BW) development
Goats were monitored weekly regarding their BW development from birth to 10 months of age by the use of an electronic scale adapted for the species (Leader, Araçatuba, Brazil). It is noteworthy that weight measurement was always performed during early morning, aiming to obtain the data before feeding the animals, maintaining a standard analysis of the results obtained.

Puberty detection in females
The determination of the onset of ovarian activity initiated at 3 months of age and continued until puberty, by plasma progesterone concentration analysis. Blood samples were collected from all female goats (T and NT) by jugular venipuncture using 4-mL tubes containing EDTA (BD Vacutainer, Becton Dickinson and Co., Holdrege, NE, USA), always in the morning, once per week. The tubes were placed on ice until centrifugation at 4400 g for 15 min at 4°C. During this period, plasma was divided into two parts, one for biochemical analysis and the other for P4 analysis. Progesterone concentrations were measured using a commercial chemiluminescence specific kit (Immucore Siemens, Deerfield, IL, USA; sensitivity of 0.03 ng/mL). Progesterone concentrations greater than 1 ng/mL in two consecutive samples were considered as indicative of luteal activity, indicating the onset of puberty (Al-Hozab and Basioni 1999).

Puberty detection in male and sperm analysis
The detection of puberty started at 3 months of age, when individual sexual behaviour was assessed once per week.
Males had a limit of 5 min to mount female goats induced to oestrus by weekly intramuscular injections of 2 mg oestradiol cypionate (ECP, Pfizer Animal Health, New York, NY, USA). After ejaculation, vaginal-smear slides were obtained and observed under a phase-contrast optical microscope (Eclipse E200, Nikon, Tokyo, Japan) for the presence of live sperm. The animals were considered pubescent when they presented the following sequences of sexual behaviour: penile exposure, mating, ejaculation and presence of mobile spermatozoa in the ejaculate (Delgadillo et al. 2007).

So as to verify the morphological and physical characteristics of the semen, at least five samples were collected from each buck aged 8–10 months old, through the artificial vagina method directed into graduated plastic tubes. After collection, semen was evaluated for volume, concentration, total sperm per ejaculate, massal motility, percentage of sperm cells with progressive individual motility and spermatological morphology (minor, major and total defects) according to Souza et al. (2011). All semen analyses were assessed through phase-contrast optical microscopy (Eclipse E 200).

Hematological and biochemical analysis

Blood samples were collected from all male and female goats (T and NT) by jugular venipuncture using 4-mL tubes containing EDTA (BD Vacutainer), always in the morning, once per week for white blood cell (WBC) and differential cell counts from birth to 10 months old. To determine total WBC, an automatic analyser (CELL-Dyn 3700, Abbott Laboratories, Abbott Park, IL, USA) was used, whereas differential cell count was performed using a small drop of blood smeared on a clean microscope slide and then examined by Romanowsky staining (Nikon Eclipse E400). Conversely, blood serum biochemical analysis was performed every 15 days by the use of serum-separation tubes (BD Vacutainer), to determine urea, creatinine, glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations (BT 3000 plus; Winer Laboratory, Rosario, Argentina). Tubes were placed on ice until centrifugation at 4400g for 15 min. Aliquots of plasma and serum were immediately sent to the laboratory for each assay.

hG-CSF analysis in blood serum

The same process was conducted for blood collection and serum sample obtention for hG-CSF quantifications in all T and NT goats by solid-phase sandwich ELISA using high-sensitivity kit (<1 pg/mL; RayBiotech, Norcross, GA, USA). Three serum samples were collected from all animals throughout the experiment, namely, in their first day of life, at 1 month old (during) and at 10 months old (after suckling). After collection, samples were subsequently frozen until hormone assay. All procedures were performed according to the manufacturer instructions. The optical density was measured at 450 nm in a plate reader (Multiskan FC, Thermo Scientific, Helsinki, Finland).

Statistical analyses

Data are presented as mean ± standard deviation (s.d.) and were compared using the Graph Pad Instat 3.6 software (GraphPad Software, San Diego, CA, USA) at a confidence level of 95%. BW at birth, mean BW gain before weaning, BW at weaning, mean BW gain after weaning, BW at puberty, age at puberty, ejaculate volume, concentration, total sperm per ejaculate, massal motility, progressive individual motility, major defects, minor defects, total defects and serum biochemistry analysis of T and NT were analysed by Student’s t-test. Due to lack of normality of the WBC data, Mann–Whitney–Wilcoxon test was used.

Results

Bodyweight development

Over 2 years of the trial, no significant (P > 0.05) differences were detected between T and NT animals regarding their BW

Table 1. Bodyweight (BW) parameters of F1-generation hG-CSF transgenic (T) and non-transgenic (NT) male and female goats before (up to 3 months old) and after (3–10 months old) weaning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T (n = 5)</th>
<th>NT (n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW at birth (kg)</td>
<td>2.54 ± 0.29</td>
<td>2.34 ± 0.19</td>
</tr>
<tr>
<td>Mean BW gain before weaning (kg/week)</td>
<td>0.86 ± 0.09</td>
<td>0.83 ± 0.21</td>
</tr>
<tr>
<td>BW at weaning (kg)</td>
<td>13.72 ± 1.59</td>
<td>13.11 ± 2.26</td>
</tr>
<tr>
<td>Equation of BW gain before weaning (kg/week)</td>
<td>0.1236x + 2.43</td>
<td>0.1249x + 2.46</td>
</tr>
<tr>
<td>Mean BW gain after weaning (kg/week)</td>
<td>0.24 ± 0.32</td>
<td>0.20 ± 0.25</td>
</tr>
<tr>
<td>Equation of BW gain after weaning (kg/week)</td>
<td>0.0287x + 12.55</td>
<td>0.0287x + 10.28</td>
</tr>
<tr>
<td>BW at puberty (kg)</td>
<td>17.78 ± 3.03</td>
<td>14.90 ± 2.43</td>
</tr>
</tbody>
</table>

Table 2. Semen parameters from F1-generation hG-CSF transgenic (T) and non-transgenic (NT) goats

Semen was collected from all bucks once per week (five replicates). Within a row, values with different letters represent a significant difference (at P = 0.05)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T (n = 2)</th>
<th>NT (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejaculate volume (mL)</td>
<td>0.77 ± 0.12</td>
<td>0.84 ± 0.22</td>
</tr>
<tr>
<td>Concentration ($\times 10^6$ cells/mL)</td>
<td>4.14 ± 1.44</td>
<td>3.60 ± 0.81</td>
</tr>
<tr>
<td>Total sperm per ejaculate ($\times 10^9$ cells)</td>
<td>3.24 ± 1.45</td>
<td>3.12 ± 1.29</td>
</tr>
<tr>
<td>Massal motility (0–5)</td>
<td>4.15 ± 0.63</td>
<td>3.94 ± 0.99</td>
</tr>
<tr>
<td>Progressive individual motility (%)</td>
<td>81.00 ± 6.58</td>
<td>84.67 ± 4.42</td>
</tr>
<tr>
<td>Major defect (%)</td>
<td>15.55 ± 3.36</td>
<td>12.49 ± 3.15</td>
</tr>
<tr>
<td>Minor defect (%)</td>
<td>1.00 ± 0.53</td>
<td>2.13 ± 1.17</td>
</tr>
<tr>
<td>Total defect (%)</td>
<td>16.55 ± 3.46</td>
<td>14.61 ± 3.33</td>
</tr>
</tbody>
</table>
development (Table 1). In addition, numerically similar values were observed in females and males respectively, for BW at birth (T: 2.62 ± 0.38 kg; NT: 2.20 ± 0.00 kg; and T: 2.43 ± 0.11 kg; NT: 2.38 ± 0.16 kg), mean BW gain (kg/week) before weaning (T: 0.85 ± 0.10 kg; NT: 0.74 ± 0.24 kg; and T: 0.88 ± 0.17 kg; NT: 0.86 ± 0.25 kg), mean BW gain (kg/week) after weaning (T: 0.28 ± 0.46 kg; NT: 0.27 ± 0.50 kg; and T: 0.19 ± 0.43 kg; NT: 0.18 ± 0.29 kg), BW at weaning (T: 13.67 ± 1.19 kg; NT: 11.80 kg; and T: 13.80 ± 1.34 kg; NT: 13.55 ± 2.55 kg), and BW at puberty goats (T: 18.50 ± 3.93 kg; NT: 17.69 kg; and T: 16.70 ± 1.34 kg; NT: 13.97 ± 1.92 kg). The comparison between males and females were not statistically analysed due to a small group size (≤3 animals).

Puberty, physical and morphological characteristics of semen

The age at puberty (months) was similar (P > 0.05) between T (5.13 ± 1.00) and NT (5.06 ± 1.20). Regarding the gender, females and males respectively, were observed to be pubertal at

![Leukocyte profile of F1-generation hG-CSF-transgenic (T; n = 5) and non-transgenic (NT; n = 4) goats during (until dotted line) and after (after dotted line) breastfeeding. (a) White blood cell (WBC) and (b) neutrophil count.](image-url)
5.30 ± 1.40 (T) and 6.77 (NT), and 4.90 ± 0.00 (T) and 4.50 ± 0.49 (NT) months. Interestingly, regardless to the presence of transgene, females were detected to be in puberty at 5.66 ± 1.37 months, whereas males were in puberty at 4.67 ± 0.40.

No significant (P > 0.05) differences between T and NT males were observed in any of the semen parameters evaluated (Table 2). Regardless of the presence of transgene, the overall means of the following variables were as follows: ejaculate volume 0.8 ± 0.12 mL, concentration 3.81 ± 0.99 × 10⁸ cells/mL, total sperm per ejaculate 3.17 ± 1.23 × 10⁹ cells/mL, massal motility 4.0 ± 0.4, progressive individual motility 83.2 ± 0.4, major defects 13.71 ± 2.49, minor defects 1.68 ± 0.40%, and total defects 15.39 ± 2.88%.

Hematological and serum biochemistry evaluations

Total WBC count for T and NT goats throughout the experimental period is shown in Fig. 1a. Significant (P < 0.05) differences in the mean WBC were detected between T and NT in their first day of life, and during and after suckling (Table 3). Although other cell counts were occasionally higher in T goats, differential counts showed that this difference was mainly due to an increased number of neutrophils, which represented 84.6%, 67.2% and 56.8% of total WBC respectively, in the three time periods (Fig. 1b). The serum biochemical parameters of T and NT goats throughout the experimental period are presented (Table 4). In comparison with NT goats, no alterations occurred in serum concentrations of glucose, urea, creatinine, AST and ALT in T goats.

Human G-CSF analysis in serum

In all nine goats (T and NT), hG-CSF protein was not detected in any serum blood samples, in their first day of life, or during or after suckling.

Discussion

In the present study, several parameters associated with growth and reproduction of F1-generation transgenic goats for hG-CSF were evaluated to assess the performance of these lines (10M and 12F) when compared with their NT siblings. As the hG-CSF transgenic line was generated by pronuclear microinjection (Freitas et al. 2012), randomly integrated foreign DNA would be of concern, since it may increase the risk of disruption of

<table>
<thead>
<tr>
<th>Life period</th>
<th>Group</th>
<th>WBC</th>
<th>Neutrophils</th>
<th>Lymphocytes</th>
<th>Eosinophils</th>
<th>Basophils</th>
<th>Monocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day of life</td>
<td>T (5)</td>
<td>174.6 ± 14.7a</td>
<td>149.7 ± 19.3a</td>
<td>16.9 ± 5.8a</td>
<td>0.7 ± 0.8a</td>
<td>0.0 ± 0.0a</td>
<td>2.8 ± 1.0a</td>
</tr>
<tr>
<td></td>
<td>NT (4)</td>
<td>15.0 ± 4.0b</td>
<td>12.6 ± 5.0b</td>
<td>3.2 ± 3.3b</td>
<td>0.1 ± 0.2a</td>
<td>0.0 ± 0.0a</td>
<td>0.2 ± 0.3b</td>
</tr>
<tr>
<td>During breastfeeding</td>
<td>T (5)</td>
<td>66.8 ± 21.1a</td>
<td>44.9 ± 20.0a</td>
<td>20.0 ± 6.8a</td>
<td>0.8 ± 0.7a</td>
<td>0.0 ± 0.0a</td>
<td>0.7 ± 0.5a</td>
</tr>
<tr>
<td></td>
<td>NT (4)</td>
<td>17.0 ± 4.6b</td>
<td>7.2 ± 3.2b</td>
<td>12.2 ± 6.9a</td>
<td>0.3 ± 0.3a</td>
<td>0.0 ± 0.0a</td>
<td>0.1 ± 0.1a</td>
</tr>
<tr>
<td>After breastfeeding</td>
<td>T (5)</td>
<td>36.6 ± 4.0a</td>
<td>20.8 ± 3.4a</td>
<td>13.5 ± 2.3a</td>
<td>1.9 ± 0.9a</td>
<td>0.0 ± 0.0a</td>
<td>0.4 ± 0.2a</td>
</tr>
<tr>
<td></td>
<td>NT (4)</td>
<td>15.5 ± 2.2b</td>
<td>6.2 ± 1.0b</td>
<td>8.1 ± 1.6a</td>
<td>0.5 ± 0.2a</td>
<td>0.0 ± 0.0a</td>
<td>0.1 ± 0.1a</td>
</tr>
<tr>
<td>Normal range</td>
<td></td>
<td>4.0–13.0</td>
<td>1.2–7.2</td>
<td>2.0–9.0</td>
<td>0.05–0.65</td>
<td>0.0–0.12</td>
<td>0–0.55</td>
</tr>
</tbody>
</table>

Table 4. Serum biochemistry of F1-generation hG-CSF transgenic (T) and non-transgenic (NT) goats

Number of animals is given in parentheses. AST, aspartate aminotransferase; ALT, alanine aminotransferase

<table>
<thead>
<tr>
<th>Life period</th>
<th>Group</th>
<th>Glucose (mg/dL)</th>
<th>Urea (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>ALT (IU/L)</th>
<th>AST (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day of life</td>
<td>T (5)</td>
<td>91.02 ± 7.51</td>
<td>39.40 ± 6.55</td>
<td>0.95 ± 0.11</td>
<td>12.37 ± 5.42</td>
<td>61.14 ± 3.70</td>
</tr>
<tr>
<td></td>
<td>NT (4)</td>
<td>100.37 ± 17.29</td>
<td>33.55 ± 3.52</td>
<td>0.91 ± 0.10</td>
<td>15.00 ± 6.75</td>
<td>63.04 ± 12.62</td>
</tr>
<tr>
<td>During breastfeeding</td>
<td>T (5)</td>
<td>56.57 ± 5.32</td>
<td>36.80 ± 2.91</td>
<td>1.02 ± 0.04</td>
<td>19.80 ± 3.65</td>
<td>62.68 ± 4.00</td>
</tr>
<tr>
<td></td>
<td>NT (4)</td>
<td>57.84 ± 3.53</td>
<td>36.61 ± 3.74</td>
<td>1.09 ± 0.17</td>
<td>18.63 ± 2.33</td>
<td>60.05 ± 4.30</td>
</tr>
<tr>
<td>After breastfeeding</td>
<td>T (5)</td>
<td>50.96 ± 4.24</td>
<td>37.89 ± 0.74</td>
<td>1.06 ± 0.22</td>
<td>15.60 ± 4.36</td>
<td>57.80 ± 8.66</td>
</tr>
<tr>
<td></td>
<td>NT (4)</td>
<td>52.84 ± 4.32</td>
<td>30.92 ± 1.51</td>
<td>1.10 ± 0.07</td>
<td>18.50 ± 7.23</td>
<td>66.25 ± 12.17</td>
</tr>
<tr>
<td>Normal range</td>
<td></td>
<td>48.2–76.0</td>
<td>21.4–42.8</td>
<td>0.7–1.5</td>
<td>15.3–52.3</td>
<td>66.0–230.0</td>
</tr>
</tbody>
</table>

aReference value reported by Boyd (1984).
bReference value reported by Kaneko et al. (1997).
cAverage obtained from the second day of life up to 3 months old.
dAverage obtained from 3 to 10 months old.

endogenous genes (Jackson et al. 2010) and disturb normal physiological processes. In this context, it has been suggested that three aspects of the welfare of a transgenic line should be evaluated, including the effects of insertional mutagenesis, transgene expression and, if applicable, effects of in vitro reproduction technologies if somatic-cell nuclear-transfer techniques were used to generate the transgenic line (Van Reenen 2009).

None of the growth and reproductive traits was affected by the presence of the transgene. No significant differences between T and NT were observed in the BW at birth, mean BW gain before weaning, mean BW gain after weaning, BW at weaning and BW at puberty, suggesting that the site of integration of the transgene did not appear to interrupt an endogenous gene for growth in utero and absorption of nutrients after birth. During all experimental periods, the mean BW gains observed in the present study were 0.06 and 0.05 kg per day for T and NT respectively, all within the range of 0.02–0.3 kg per day reported in the literature for goats (National Research Council 2007).

The age at puberty observed for males and females, for both T and NT, were within the range reported in literature for caprine species (3–7 months of age; Jackson et al. 2010) and the onset of puberty initiated when expected considering their BW. Additionally, semen physical (ejaculate volume, concentration, total sperm per ejaculate, massal motility, progressive individual motility) and morphological (major, minor, total defects) characteristics were similar between both experimental groups. Values observed for these parameters are within the normal range for goats, namely, volume of 0.1–1.5 mL, concentration of 2–6 billion sperm per mL of ejaculate, progressive individual motility of 82–93% and normal morphology of 80–95% (Chandler et al. 1988; Nur et al. 2005). Overall, the presence of the hG-CSF transgene in the genome of these animals does not appear to interfere on their normal reproductive parameters. This result can be attributed to insertion site and heterozygosity of animals used in the present study. The heterozygous or homzygous status for the transgene has been shown to correlate with gene-expression levels and rates of the transmission of the transgene (Tesson et al. 2002) that could compromise the reproductive health of these animals.

Human G-CSF regulates the proliferation, differentiation and maturation of haematopoietic cells (Crea et al. 2009). This molecule exerts biological functions through specific receptors expressed on the surface of target cells (Richt et al. 2007), stimulating proliferation and differentiation of the neutrophil. During the beginning (acute) phase of inflammation, particularly as a result of bacterial infection, environmental exposure (Jacobs et al. 2010) and some cancers (Waugh and Wilson 2008; De Larco et al. 2004), neutrophils are one of the first-responders among inflammatory cells to migrate towards the site of inflammation. We observed, in the present study, an increase of 11.6-, 4.5- and 2.4-fold in the WBC count of T compared with NT goats in their first day of life, during and after suckling respectively. This result suggests that G-CSF, although a human protein, is able to affect goat haematopoietic stem cells, stimulating their proliferation and differentiation, mainly for neutrophils. It is important to highlight that we did not detect the presence of this cytokine in the serum in any T goats, at different life periods of evaluation. Additionally, no ectopic hG-CSF expression was detected in the studied tissues of F1 transgenic males (Batista et al. 2014; Melo et al. 2015). It is noteworthy that neither chronic nor acute kidney disease was detected, as demonstrated by normal concentrations of urea (primary metabolite derived from dietary protein and tissue protein turnover) and creatinine (product of muscle catabolism). Likewise, indicators of liver function (ALT and AST) suggested normal hepatic functioning, as well as normal glycemic level. Finally, this information can provide support contributing to the knowledge required to make science-based regulatory decisions regarding the use of transgenic animals.

Therefore, these results suggest a greater ability to respond to infection by these transgenic animals than by non-transgenic animals.

Conclusions

Despite the increased WBC count due to neutrophilia, first-generation hG-CSF-transgenic male and female goats remained clinically healthy throughout the experimental period, and remain so until now. Their BW development was considered normal both prenatally and during their first months of age. Moreover, all the reproductive characteristics evaluated, such as age at puberty and semen physiological and morphological characteristics, were not adversely affected by the insertion of the transgene. Therefore, it is possible to assume that all animals are normal and had no deleterious effects on either growth or reproductive parameters by the presence of the transgene or as a consequence of leukocyte profile alteration.

Acknowledgements

The authors are greatly indebted to researchers I. A. Serova and O. L. Serov (Institute of Cytology and Genetics) and L. E. Lyudmila (Institute of Molecular Genetics), from Russian Academy of Sciences, for their important contribution in design and generation of the transgenic goats. R. I. T. P. Batista conducted his PhD with a fellowship from CNPq (Brasília, Brazil). L. M. Melo and J. M. G. Souza-Fabjan conducted their post-doctoral study under the auspices of CAPES (Brasilia, Brazil) and CNPq respectively. V. J. F. Freitas is a fellow of CNPq.

References

Evaluating the fitness of hG-CSF transgenic goats

Animal Production Science

G

Sheep and goat medicine. 858. doi:10.20506/rst.24.2.1587

