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A B S T R A C T   

Transfer of fresh sheep embryos frequently results in higher pregnancy rate compared to cryopreserved ones, 
possibly due to a failure in the communication between the cryopreserved embryo and the endometrium during 
pre-implantation and pregnancy establishment. Thus, this study assessed the effect of sheep embryo cryopres-
ervation (slow freezing or vitrification) on embryo survival rate and expression of genes related to trophectoderm 
differentiation (CDX2), pluripotency maintenance (NANOG), cell proliferation (TGFB1), mitochondrial activity 
(NRF1) and apoptosis (BAX and BCL2). Superovulation (n ¼ 32 ewes) was performed and embryos were 
transcervically collected. One hundred good quality (Grade I and II) embryos were allocated into three groups: 
fresh embryos (CTL; n ¼ 15), slow freezing (SF; n ¼ 42) or vitrification (VT; n ¼ 43). After thawing/warming, 
three pools of five blastocysts per group were used for RT-qPCR; the remaining 55 embryos were cultured in vitro 
in SOFaa medium at 38.5 �C and 5% CO2 (SF: n ¼ 27 and VT: n ¼ 28). Survival rate of SF and VT were, 
respectively, 29.6% (8/27) and 14.2% (4/28) at 24 h; and 48.1% (13/27) and 32.1% (9/28) at 48 h (P > 0.05). 
Only CDX2 was affected (up-regulated, P < 0.05) in both groups compared to CTL. The BAX transcript was 
upregulated in VT, compared to SF group. The VT increased (P < 0.05) the expression of all genes, except for 
NANOG and NRF1, when compared to the CTL. In conclusion, although in vitro survival was similar between 
techniques, VT led to increased changes in blastocyst gene expression compared to CTL and SF.   

1. Introduction 

The successful cryopreservation of sheep embryos can improve all 
other reproductive biotechnologies, such as multiple ovulation and 
embryo transfer or in vitro embryo production. However, lower preg-
nancy rates after transferring cryopreserved embryos, compared to fresh 
embryos are reported [13,18,39], regardless of the origin of embryos 
[either in vivo-derived (IVD) or in vitro produced (IVP)]. The decrease in 
the developmental competence of mammalian embryos after cryopres-
ervation is mainly associated with the morphological and functional 
damage that the cell suffers during the process. The extent of the cryo-
genic lesion is highly variable and depends on the species, stage of 
development, embryo origin [11] and cryopreservation technique (slow 
freezing or vitrification). Slow freezing (SF) is the most widespread 

cryopreservation technique and its main advantage is the reduced 
cellular toxicity due to low cryoprotectant concentration; however, it 
does allow the formation of ice crystals that can lead to cell damage. The 
opposite can be achieved in the vitrification (VT): no crystallization 
occurs, due the production of a glassy state of high viscosity to behave 
like a solid [41], but cryoprotectant toxicity is its major problem. In 
cattle, both SF and VT resulted in similar cryosurvival and pregnancy 
rates for IVD embryos [34]. However, in sheep these data are still 
conflicting. 

During embryo development, morphological changes such as cleav-
ages, compaction, blastulation, implantation and gastrulation [51,55] 
are accompanied by changes in the transcript levels of genes associated 
with differentiation. These genes are expressed in specific stages and 
cells, orchestrating the formation of different types of cells, tissues and 
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organs. Transcription factors required for maintenance of pluripotency, 
such as POU class 5 homeobox 1 (POU5F1 or OCT4), SRY-box tran-
scription factor 2 (SOX2) and Nanog homeobox (NANOG), expressed 
strictly in cells of the internal cell mass (ICM), are mediated by the ac-
tion of the caudal type homeobox 2 (CDX2) gene product expressed on 
trophectoderm cells [9,43] have been described in blastocysts. 

Mitochondria are responsible for producing the most energy that 
drives the embryo development and it plays an important role in calcium 
homeostasis and fatty acid oxidation [33]. The embryo only begins to 
replicate it in the hatched blastocyst stage, so all previous stages depend 
on the pre-existing mitochondria in the oocyte [53]. Therefore, only 
during the implantation period the embryo can replicate mitochondrial 
DNA [54,59]. The increase in mitochondrial DNA transcription and 
replication in the blastocyst stage in ruminants is coordinated by the 
nuclear respiratory factor 1 (NRF1) gene [10,35]. Thus, the alteration in 
this gene expression may compromise mitochondrial proliferation and 
physiology, leading to impairment in cellular homeostasis. In addition, 
the anti-apoptotic (B-cell lymphoma protein 2; BCL2) and proapoptotic 
(BCL-2 associated protein X; BAX) genes, members of the BCL-2 family, 
mediate the release of cytochrome C from the intermembrane space of 
mitochondria, triggering programmed cell death [2]. The relative 
expression of these genes can be used as a predictor of embryonic 
competence. 

Biopsies derived from IVP blastocysts that resulted in the delivery of 
calves were enriched with transcripts necessary for implantation, car-
bohydrate metabolism, growth factor and placentation [16]. An increase 
in the expression of genes associated with cell survival, growth and 
proliferation was detected in blastocysts of high cryosurvival [34]. 
Growth factors, such as transforming growth factor beta 1 (TGFB1), 
involved in cell proliferation and differentiation are also used as markers 
of embryonic competence [40]. Indeed, the knowledge about the gene 
expression profile after cryopreservation is crucial for better under-
standing the mammal embryo development and may be useful to further 
refinement of embryo cryopreservation techniques. Thus, this study 
assessed the effect of cryopreservation techniques (SF or VT) on embryo 
survival rate and expression of genes related to pre-implantation of IVD 
sheep blastocysts. 

2. Material and methods 

2.1. Ethics, location and experimental conditions 

This research was conducted under the principles of the Brazilian 
Society of Laboratory Animal Science with approved by the Animal Care 
Committee of Universidade Federal Fluminense (# 5956101218/2019). 
The experiment was conducted during April and May (breeding season) 
of 2019 in Coronel Pacheco (21� 350 S and 43� 150 W) in Minas Gerais 
state, Brazil. All animals underwent gynecological and andrological 
examinations and had a mean body weight of 57 � 12 kg and body 
condition score of 3.5 � 0.4 (scale 1–5) [58]. They were kept in an 
intensive system and fed corn silage, supplemented with concentrate 
provided on demand [36]. Mineralized salt (Salminas Sheep®, Nutri-
plan, Juiz de Fora, Brazil) and drinking water were available ad libitum. 

2.2. Experimental design 

Ewes (n ¼ 32) were superovulated and embryos were retrieved by 
non-surgical embryo recovery (NSER), with recovery rate of 65%. A 
hundred viable embryos [18 compact morulae (Mc), 13 initial blasto-
cysts (Bi), 32 blastocysts (Bl) and 37 expanded blastocysts (Bx)] were 
allocated into three experimental groups: fresh embryos as SF (n ¼ 42) 
or VT (n ¼ 43), and blastocysts in control (CTL; n ¼ 15). After cryo-
preservation, embryos were thawed (SF) or warmed (VT), and then 
allocated into two trials: 1) Gene expression – three pools of five blas-
tocysts from SF (n ¼ 15: 7 Bx, 6 Bl, 2 Bi), VT (n ¼ 15: 6 Bx, 8 Bl, 1 Bi) and 
CTL (n ¼ 15: 6 Bx, 3 Bl, 6 Bi) were dry frozen in cryotubes (free of RNase 

and DNase) at - 196 �C until molecular analysis and three replicates for 
each pool were performed. The RT-qPCR was made from gene tran-
scripts related to embryo pre-implantation (CDX2, NANOG, TGFB1, 
NRF1, BAX, BCL2); 2) in vitro culture: embryos from SF (n ¼ 27: 11 Bx, 6 
Bl, 1 Bi, 9 Mc) and VT (n ¼ 28: 7 Bx, 9 Bl, 3 Bi, 9 Mc) were cultured in 
SOFaa medium (BIOK SOF®, Bioklone Reproduç~ao Animal, Jaboticabal, 
SP, Brazil), at 38.5 �C and 5% CO2. The survival rate was assessed at 24 
and 48 h. 

2.3. Embryo recovery and classification 

Ewes (n ¼ 32) were synchronized and superovulated as reported by 
Figueira et al. [18]. Estrus was monitored twice daily, and the ewes were 
mated by fertile rams (4:1 ratio). Embryos were recovered between the 
sixth and seventh day of the estrous cycle (D0 ¼ estrus onset), by 
non-surgical embryo recovery (NSER) after cervical dilation protocol, 
described previously [21]. All recovered structures were transferred to 
the holding medium (Holding Plus®, Cultilab, Campinas, Brazil) and 
classified according to their development/stage (Mc, Bi, Bl, Bx), and 
quality. Only GI and GII embryos were used [56]. 

2.4. Cryopreservation of embryos 

2.4.1. Slow freezing and thawing 
Slow freezing procedures were based on the method previously 

described [19,20]. Ethylene glycol (EG; 1.5 M) was used in one step with 
a base solution (BS: PBS supplemented with 20% fetal bovine serum). 
Freezing was performed by cooling from 20 �C until � 6 �C at a rate of 3 
�C/min; stabilization in � 6 �C for 15 min and seeding after 5 min; 
cooling to � 32 �C at a rate of � 0.5 �C/min and then holding for 10 min 
at � 32 �C; and then plunging into LN2 for storage. Thawing was per-
formed at room temperature for 5 s, then in a water bath at 36 �C for 30 
s. 

2.4.2. Vitrification and warming 
Vitrification was conducted according to Gibbons et al. [23]. The 

method was separated in four steps with increasing concentrations of 
cryoprotectants, and last step, with low time exposure of cryoprotec-
tants with the embryos. 1) BS, for 5 min; 2) BS þ 10% glycerol (G) for 5 
min; 3) BS þ 10% G þ 20% EG for 5 min; and 4) BS þ 25% G þ 25% EG 
for 30 s. After these steps, the tips with embryos were introduced into 
3.6 mL cryotubes filled with LN2. For warming, the tips were warmed 
between the thumb and middle finger for 10 s. In the media, sucrose was 
included for osmolarity control, and each step took 5 min at 25 �C: 1) 
12.5% G þ 12.5% EG þ 0.5 M sucrose; 2) 0.5 M sucrose; 3) 0.25 M 
sucrose; 4) BS. 

2.5. RNA extraction, reverse transcription, and quantitative PCR 
amplification 

Samples were analyzed by quantitative polymerase chain reaction 
(qPCR) after reverse transcription [5]. Total RNA was extracted from 
three pools of five blastocysts per group (CTL, SF and VT) using the 
RNeasyMicro Kit (Qiagen Inc., Valencia, EUA) according to the manu-
facturer’s instructions and treated with DNase for 15 min to prevent 
DNA contamination. Elution was performed with 14 μL of RNAase free 
water and the RNA quantification of each pool was performed using 1 μL 
of sample on a spectrophotometer (Nanodrop 2000, Wilmington, DE, 
USA). For reverse transcription, using the SuperScript III first-strand 
synthesis Supermix (Invitrogen, Carlsbad, CA, USA), the same RNA 
concentration was used for all samples. The reverse transcription reac-
tion was prepared by mixing oligo (dT)20 primers, dNTP mixture, Su-
perscript III RT, RNase OUT, MgCl2, RT buffer and RNA sample in a final 
volume of 20 μL. The mixtures were first incubated at 65 �C for 5 min 
and then for 50 �C for 50 min. The reaction was terminated at 85 �C for 5 
min and then chilled on ice. After that, RNase H was added to the 
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samples and incubated at 37 �C for 20 min. 
Relative quantification was performed in triplicate using real-time 

polymerase chain reaction (ABI Prism 7300 Sequence Detection Sys-
tems, Foster City, CA, USA). Reactions (20 μL total volume) were pre-
pared using a mixture of SYBR green kit (10 μL; Power SYBR Green, 
Applied Biosystems), 0.1 μM primers (Table 1), nuclease-free water and 
reverse transcribed cDNA (1 μL). Negative controls, comprising the PCR 
reaction mixture without nucleic acids, were also run with each group of 
samples. Template cDNAs were denatured at 95 �C for 10 min, and all 
genes were amplified by 40 cycles of a thermal cycling programmed of 
95 �C for 15 s, 55 �C for 15 s and 60 �C for 30 s. Fluorescence data were 
acquired during the extension steps. After each PCR run, a melting curve 
analysis was performed to confirm that a single specific product was 
generated. Primer efficiency was calculated using LinRegPCR software 
[44] for each reaction. The primer efficiency average was 1.89; 1.91; 
1.93; 1.91; 1.91; 1.91; 1.93 and 1.98 to TGFB1, NANOG, NRF1, CDX2, 
BAX, BCL2, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 
H2AFZ (H2A histone family, member Z), respectively. Relative quanti-
fication was performed by the comparative Ct method (2� ΔΔCt) using the 
REST 2008 software [32]. The expression of each target gene was 
normalized using geometric mean of GAPDH and H2AFZ values. The 
stability of the reference genes was calculated according to the meth-
odology described by Pfaffl et al. [42], using the BestKeeper - Excel tool. 
The values of the Pearson correlation coefficient observed for the 
GAPDH (r2 ¼ 0.774) and H2AFZ (r2 ¼ 0.745) genes demonstrate sta-
bility (P < 0.01) of these reference genes. 

2.6. Statistical analysis 

The embryo survival data were submitted to Fisher’s Exact Test. 
Construction of graphics was performed in GraphPad Prism 8.0.2. Dif-
ferences were considered significant at P < 0.05. Data are given as the 
mean � s.d. 

3. Results 

3.1. Thawing, warming and in vitro culture 

The results of embryonic survival rate after cryopreservation are 
shown in Table 2. No difference (P > 0.05) was observed in survival rate 
at 24 and 48 h of in vitro culture when embryos were subjected to SF or 
VT. When data were pooled regardless of treatment, the average survival 
at 24 and 48 h was 21.8 and 40.0%, respectively. 

3.2. Gene expression 

Gene expression of all genes in the three groups are shown in Fig. 1. 

Regarding SF, the expression of genes related to apoptosis regulators 
(pro-apoptotic [BAX] and anti-apoptotic [BCL2]), pluripotency main-
tenance (NANOG), cell proliferation and differentiation (TGFB1) mito-
chondrial activity (NRF1) were not altered (P > 0.05) in embryos 
compared to the CTL. Except for the up-regulated CDX2 gene (tro-
phectoderm differentiation) (P < 0.05). The VT group had an increased 
(P < 0.05) the expression of all genes (BAX, BCL2, CDX2 and TGFB1, 
except for NANOG and NRF1, when compared to CTL. In the comparison 
between both techniques (SF and VT), only the BAX gene was up- 
regulated (P < 0.05) in VT group. 

4. Discussion 

The global analysis of gene expression shows that VT induces a 
greater change in the profile of gene expression than SF, when compared 
to fresh embryos. These data may suggest that IVD embryos are more 
sensitive to the toxic effect of the high concentration of cryoprotectants 
than to the harmful effects of ice crystals. However, in vitro analyses 
carried out in the present study demonstrate that the embryos cry-
opreserved by either SF or VT present similar survival in vitro. This data 
is consistent with a previous report [60], where similar in vitro 
re-expansion rate was obtained when both techniques were compared. 
The VT technique was developed mainly to improve the survival of IVP 
embryos, which in general have low cryosurvival when subjected to SF. 
In comparison with IVD embryos, IVP embryos are characterized by a 
large accumulation of intracytoplasmic lipids and a high amount of 
cholesterol and unsaturated fatty acids in the membrane [1,17,45]. 
These aspects can compromise the success of cryopreservation, as they 
affect the diffusion and osmosis processes, during freezing/vitrification 
and thawing/warming. Thus, due to the lower amount of lipids, IVD 
perhaps have impaired developmental capacity when they are vitrified, 
possibly due to the rapid diffusion of the cryoprotectant and increased 

Table 1 
Oligonucleotide primers for RT-qPCR analysis.  

Gene symbols Sequence of primers 50 to 30 Annealing temperature (�C) Amplicon size (bp) References 

TGFB1 F:GGAATTCATGCCGCCCTCGGGGCTGCGG 63 390 Juengel et al. [29] 
R:GGTCTAGATCAGCTGCACTTGCAGGAGCG 

NANOG F:TTCCCTCCTCCATGGATCTG 53 501 Sanna et al. [50] 
R:AGGAGTGGTTGCTCCAAGAC 

NRF1 F:GCAGGTCCTGTGGGAATG 61 412 Nau et al. [37] 
R:CTGGGATAAATGCCCGAAG 

CDX2 F:GCCACCATGTACGTGAGCTAC 60 140 Sakurai et al. [49] 
R:ACATGGTATCCGCCGTAGTC 

BAX F:CCTGGGATCTTGAAACTCTCCTT 60 566 Chakravarthi et al. [8] 
R:CTGAGCCAGGCTGAAATCAAAA 

BCL2 F:GCCGAGTGAGCAGGAAGAC 60 214 Chakravarthi et al. [8] 
R:GTTAGCCAGTGCTTGCTGAGA 

GAPDH F:ATGTTTGTGATGGGCGTGAA 60 176 O’Connor et al. [38] 
R:ACAGTCTTCTGGGTGGCAGT 

H2AFZ F:GTCGTGGCAAGCAAGGAG 57 182 O’Connor et al. [38] 
R:GATCTCGGCCGTTAGGTACTC  

Table 2 
In vitro culture survival rate of in vivo-derived sheep embryos, cryopreserved by 
either slow freezing (SF) and vitrification (VT) methods, after thawing and 
warming, respectively.  

Group Embryo survival rate (%) 

24 h 48 h 

VTa 4/28 (14.2) 9/28 (32.1) 
SFa 8/27 (29.6) 13/27 (48.1) 
Total 12/55 (21.8) 22/55 (40.0) 

Fisher’s Exact Test (P > 0.05). 
a VT group contained n ¼ 28 embryos: seven expanded blastocysts, nine 

blastocysts, three initial blastocysts and nine compact morulae; SF group con-
tained n ¼ 27 embryos: 11 expanded blastocysts, six blastocysts, one initial 
blastocyst and nine compact morulae. 
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relative exposure time to the cryoprotectant. 
Mammalian embryos are particularly sensitive to thermal shock [47, 

48]. The thermal stress may result in homeostatic regulator production 
as chaperones [15], apoptosis related proteins [61] and expression of 
genes associated with development capacity as CDX2 [52]. The balance 
between pro and anti-apoptotic family members partially determines 
sensitivity of cell to apoptosis. Anti-apoptotic genes as BCL2 interact 
with pro-apoptotic BAX genes to counteract their activity. Activation of 
BAX proteins lead to a breakdown in outer mitochondrial membrane 
permeability, the release of cytochrome C in cytoplasm, and the acti-
vation of caspases responsible for cell death. In the present study, we 
observed higher expression of the BAX gene in embryos from VT, 
compared to CTL and SF. These data indicate a greater pro-apoptotic 
stimulus in VT embryos compared to the other groups. 

Regardless of cryopreservation technique (SF or VT), CDX2 gene 
expression was up-regulated compared to fresh embryos, but this result 
could hypothetically be affected by the slightly different developmental 
stages of embryos in the three groups. Studies in cattle and sheep have 
shown that IFNT expression is CDX2-dependent [49], which is expressed 
in blastocysts [6,14,27] and IFNT is important signaling the process of 
maternal recognition of pregnancy [24,26,46]. Increased expression of 
this gene in cryopreserved embryos (SF and VT) may be a strategy to 
boost IFN-τ production, since secretion of this protein is compromised in 
cattle cryopreserved embryos [3]. Supporting this hypothesis, we also 
observed an increase in TGFB1 expression in VT-embryos compared to 
the CTL. The TGF-β1 is a polypeptide member of the TGF-β superfamily 
of cytokines. This protein when secreted stimulates cell proliferation and 
differentiation [4,25,30,57]. It is reasonable to assume that its increased 
expression may be a compensatory mechanism to prevent embryonic 

death. 
In the present study, regardless of the technique, embryo cryopres-

ervation did not affect the expression of NANOG, suggesting that cellular 
stress during cryopreservation does not compromise the ability of em-
bryonic pluripotency to be maintained [9]. Similarly, NRF1 expression 
was also unaffected by cryopreservation. These data suggest the need for 
increased expression of the NRF1 gene to supply the cell energy pro-
duction capacity. However, analysis of this gene immediately after 
cryopreservation demonstrates that its expression is unaffected by ul-
trastructural and cytotoxic damage, which sheep embryos suffer during 
cryopreservation [12]. 

Although in vitro culture analysis was similar between groups, the VT 
group had a significant increase in the expression of all genes, except for 
NANOG and NRF1. We believe that the increase of pro-apoptotic gene 
(BAX) found in VT compared to SF, occurred due to high concentration 
of cryoprotectants used in this technique, stimulating response of 
cellular stress, due to chemical toxicity or osmotic on cells, beyond to 
cold stress of cryopreservation [41]. Leoni et al. [31] evaluated genes 
related to the water movement (AQP3: Aquaporin 3/ATP1A1: ATPase 
Naþ/Kþ transporting subunit alpha 1) of IVP sheep blastocyst after VT. 
After warming, embryos were cultured for 8 h and 16 h, and the gene 
expression was evaluated on re-expanded blastocysts. The authors 
observed the decrease of ATP1A1 and increase of AQP3 from 8 h to 16 h, 
being inversely proportional. In addition, Iwayama et al. [28] and Frank 
et al. [22] suggested that VT technique compromises the primary 
mechanism of water movement by ATP1A1, activating a second move-
ment mechanism by AQP3. However, AQP3 is known for its 
non-exclusive water permeability, being also permeable to other small 
solutes and glycerol [7]. In our study, glycerol was used in the VT 

Fig. 1. Gene expression related to trophectoderm differentiation (CDX2), pluripotency maintenance (NANOG), cell proliferation (TGFB1), mitochondrial activity 
(NRF1) and apoptosis (BAX and BCL2) of fresh sheep blastocysts (Control), and immediately after vitrification/warming or frozen/thawing of blastocysts. Different 
letters show statistical difference (P < 0.05). 
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protocol, resulting in greater intracellular toxicity, response to cell stress 
and apoptosis than in SF, possibly due to the increase in cryoprotectant 
influx by AQP3. This corroborates with the up-regulation of the BAX 
pro-apoptotic gene founded in vitrified IVD sheep embryos. 

In conclusion, in vivo-derived embryos submitted to either SF or VT 
have similar ability to survive in vitro but VT led to increased changes in 
blastocyst gene expression compared to CTL and SF. 
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