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Lipid modulation during IVM increases the metabolism and improves the 
cryosurvival of cat oocytes 
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A B S T R A C T   

This study investigated the time course of lipid accumulation during IVM and assessed the role of lipid modu-
lators added during IVM on lipid content, nuclear maturation, oxidative stress, mitochondrial activity, gene 
expression, and cryosurvival of cat oocytes. First, the lipid content of immature COCs was compared to those 
subjected to different IVM duration times (24, 28, and 32 h). Then, the lipid content was investigated after the 
use of different lipid modulators [conjugated linoleic acid (CLA), forskolin (FSK), L-carnitine (LC)]. Subsequently, 
both the CONTROL group and MIX 18 (CLA+FSK+LC) were compared regarding nuclear maturation, mito-
chondrial activity, reactive oxygen 19 species (ROS), and glutathione (GSH) levels, to the expression of SDHA, 
GDF9, BMP15, ZAR-1, 20 PRDX1, SIRT1, and SIRT3 genes (normalized by ACTB and YWHAZ genes); and to 
vitrification and 21 post-warming viability assessment. When not using any lipid modulator, an increase (P <
0.05) in lipid content could be observed after 28 h of IVM. The MIX group showed the greatest (P < 0.05) 
reduction in oocyte lipid content after 28 h of IVM. No difference (P > 0.05) was observed in the MII rate in the 
CONTROL (45%) and MIX (41%) groups and in mitochondrial activity ((1.00 ± 0.35 A U vs 1.19 ± 0.14 A U). 
Although ROS and GSH levels were higher (P < 0.05) in MIX than in CONTROL, the redox balance (ROS/GSH) 
was greater (P < 0.05) in the latter (C:1.00 ± 0.20b vs M:0.26 ± 0.06 a A.U). The GDF9, HSP70, PRDX1, and 
SIRT1 transcripts were downregulated (P < 0.05) in MIX-oocytes, compared to the CONTROL. After vitrification, 
MIX (74%) presented a higher (P < 0.05) viability compared to control (53%). In conclusion, MIX can reduce the 
total lipid content and improve viability after cryopreservation, however, it seems to affect the oocyte meta-
bolism in a way that still needs to be better understood in the cat biological model.   

1. Introduction 

The domestic cat is an important experimental model for assisted 
reproductive technologies focused on endangered felids conservation. In 
this sense, in vitro embryo production (IVEP) and cryopreservation 
represent valuable tools [1,2], however, despite many advances ach-
ieved in IVEP, the efficiency of the oocyte in vitro maturation (IVM) still 
limits the application of this biotechnology [3]. Intracellular lipids 
provide energy for oocyte maturation and the subsequent early embry-
onic development [4] and exhibit a variety of important cellular func-
tions, including membrane composition, energy storage, and cell 
signaling [5]. Some species have physiologically a greater amount of 

lipids in their oocytes, such as pigs, cattle, and cats [6,7] and despite the 
physiological amount and their use for metabolic functions, there are 
studies in cattle indicating that lipid content increases abnormally 
during IVM [8,9]. 

It is known that the amount and composition of intracellular lipids 
are important factors in oocyte viability during cryopreservation since 
one of the main sources of cell damage at chilling temperature is the 
lipid phase transition that can change and disrupt intracellular processes 
[10]. Considering that cat oocytes present a high concentration of lipids 
[6] and the possibility of a lipid accumulation on IVM as reported in 
bovine species [8], the knowledge of the lipid content behavior on IVM 
and its modulation became an important aspect to be considered in this 
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context. 
Depending on the dose and exposure time, lipid modulators may 

induce a high modification in intracellular lipids and/or reduce lipid 
content, and the combined use of lipid modulators on IVM already 
proved to be efficient in promoting changes in lipid content of oocytes in 
cattle and pigs [11–13]. Different modulators were already reported for 
such purposes. Forskolin (FSK), a cAMP modulator widely used in IVM 
of several species, can enhance lipolytic activity and induce the activa-
tion of intracellular lipases [3]. L-carnitine (LC) has antioxidant prop-
erties and stimulates the metabolism of intracellular lipid stores through 
the ability to upregulate β-oxidation [5]. Conjugated linoleic acid t10, 
c12 (CLA) can induce linoleic acid incorporation and triacylglycerols 
and phospholipids production which improves the lipid cellular lipid 
profile [14] (Fig. 1). 

Even so, studies regarding lipid content and accumulation in cat 
oocytes are still scarce. Based on that, the aim of this study was to 
investigate (i) the time course of lipid accumulation during IVM; (ii) the 
effect of different lipid modulators during IVM on lipid content; and (iii) 
their role on nuclear maturation, mitochondrial activity, oxidative 
stress, gene expression, and cryopreservation of cat in vitro-matured 
oocytes. 

2. Material and methods 

Unless otherwise indicated, the chemicals were purchased from 
Sigma Chemical Co. (St Louis, MO, USA). 

Ovaries from the domestic cat were collected at local veterinary 
clinics, as by-products from owner-requested routine ovar-
iosalpingohysterectomies, and for this reason, this study did not require 
the Ethics Committee of Animal Use approval. 

2.1. Experimental design 

2.1.1. Experiment 1 
This experiment was conducted to evaluate the lipid content of cat 

oocytes. 
1.1. First assay: To understand the time course of lipid accumulation 

in this species, and considering the variation found in IVM times in cat 
studies, the oocytes were submitted to in vitro maturation for 24, 28, and 
32 h before evaluating the lipid content, and were also compared with 
an immature group as control. 

1.2 Second assay: After fixing the IVM time to be used, three lipid 
modulators (CLA, FSK, and LC) were tested and compared to the control 
(without lipid modulators) to evaluate the effect on the total lipid con-
tent. Concentrations of the modulators used in the present study were 

Fig. 1. Mechanism of action of lipid modulators. (A)When forskolin [FSK] binds to Adenyl cyclase (AC), cAMP is synthesized from ATP present in the cytoplasm, 
promoting an increase in cAMP levels that activates protein kinase A (PKA). PKA phosphorylates endogenous lipases such as hormone-sensitive lipase (HSL) and 
peripelin (TIP47) located on the surface of the lipid droplet (LD). After being phosphorylated, HSL is translocated to the cytoplasm, binding to TIP47 to induce 
fragmentation of LD into smaller LD, which can be more easily accessed, and the nucleus degraded. (B) Conjugated linoleic acid [CLA] is involved in the regulation of 
lipid metabolism through the stimulation of KA (BI) and mitogen-activated protein kinase (MAPK) (BII) pathways that interfere with LD lipolysis, as well as in the 
control of oocyte gene expression and protein synthesis, that is, perilipins (BIII). (C) L-carnitine [LC] acts as a lipolytic agent promoting the entry of fatty acids (FA) 
into the mitochondria to be used in ß-oxidation. The FA that are used in mitochondrial oxidation are temporarily linked to the LC forming fatty-acyl-carnitine. These 
are transferred to the intermembrane space by the action of acyltransferase I and then are displaced to the mitochondrial matrix by facilitated diffusion through the 
transporter present in the inner membrane of the mitochondria. In the matrix, the transfer of the acyl group to the mitochondrial coenzyme A occurs and the carnitine 
becomes free to return to the cytoplasm by the same transporter to carry new FA. 
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based on previous studies on IVM with cats for FSK [15] and LC [16] and 
with bovine [17] and porcine [12] for CLA. 

1.3. Third assay: The group with the lipid modulator that showed a 
better response in the second assay was compared to a new group, the 
MIX complex group, which was supplemented with the three lipid 
modulators (CLA + FSK + LC) to observe if a multiple pathway lipid 
modulator cocktail could be even more effective in reducing lipid con-
tent (Fig. 2). 

2.1.2. Experiment 2 
After validating the IVM time for the occurrence of lipid accumula-

tion and the effect of reducing the lipid content with the tested group 
(MIX), this experiment aimed to evaluate the effect of this treatment on 
(2.1) nuclear maturation, (2.2) mitochondrial activity, (2.3) oxidative 
stress, (2.4) expression of genes related to metabolism and oocyte 
developmental competence, and (2.5) viability after cryopreservation 
(Fig. 2). 

2.2. COCs collection and selection 

During the ovariosalpingohysterectomies surgeries, the removed 
ovaries from each queen were placed in sterile 0.9% (w/v) NaCl solution 
at 4 ◦C. The samples were sent to the laboratory within 2–3 h after re-
covery. In the laboratory, ovaries were washed in phosphate-buffered 

saline (PBS) to remove the excess blood from surgery. Then, they were 
sliced and washed into a 60 mm Petri dish with a washing medium 
(TCM-HEPES supplemented with 3 mg/mL BSA and 0.25 mg/mL py-
ruvate, 0.15 mg/mL L-glutamine, 0.6 mg/mL sodium lactate, 100 IU/mL 
penicillin, 0.1 mg/mL streptomycin, 0.25 μg/mL amphotericin B) at 
37 ◦C by using a scalpel blade to release COCs. The COCs were selected, 
and graded, and only grade I and II COCs (surrounded by, at least, two 
layers of cumulus cells with a uniform, dark, and homogeneous cyto-
plasm) were randomly allocated into the IVM treatments, according to 
the experiments, for all of them. 

2.3. IVM and nuclear maturation assessment 

For IVM, groups of oocytes were placed in an IVM medium consisting 
of TCM 199 supplemented with 0.02 IU/mL of FSH/LH, 100 μM of 
cysteamine, 2.2 g/L of sodium bicarbonate, 3 mg/mL BSA, 0.25 mg/mL 
sodium pyruvate, 0.15 mg/mL L-glutamine, 0.6 mg/mL sodium lactate, 
and 0.055 mg/mL gentamicin. COCs were incubated in a four-well dish 
(Ingamed, Maringá, Brazil) containing 500 μL of IVM medium at 
38.5 ◦C, in an atmosphere with 5% CO2, and in maximum humidity. 
Depending on the experiment, the IVM duration was different (24, 28, or 
32 h). And according to the experiment and treatments, it was added (1) 
100 μM CLA, (2) 100 μM FSK, (3) 0.5 mg/mL of LC, or (4) all of them 
(MIX). 

Fig. 2. Experimental Design. (A) Schematic illustration of experiment 1: Lipid content was evaluated and compared in immature oocytes and oocytes from different 
IVM time durations (24, 28, and 32 h); under the effect of three lipid modulators (conjugated linoleic acid [CLA], forskolin [FK], and L-carnitine [LC] and compared 
to a Control without modulators; and under the effect of conjugated linoleic acid [CLA] and the MIX group [CLA + FSK + LC]. (B) Schematic illustration of 
experiment 2: Oocytes from CONTROL and MIX IVM groups were submitted to nuclear maturation assessment; mitochondrial activity; reactive oxygen species (ROS) 
and glutathione (GSH) levels analysis, expression of genes related to oocyte quality and metabolism, and cryopreservation. In total, 831 oocytes were used, obtained 
in 23 replicates. 
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After IVM, COCs were denuded with hyaluronidase, fixed in 4% 
paraformaldehyde, stained with Hoechst 33342, and evaluated under 
fluorescence microscopy (Nikon Eclipse Ci, Nikon Corporation, Tokyo, 
JP) at a wavelength between 340 and 380 nm. They were examined to 
evaluate the meiosis nuclear stage and the presence or absence of the 
first polar body, and classified as a germinal vesicle (GV) or germinal 
vesicle breakdown (GVB), Metaphase I (MI), and Metaphase II (MII). The 
nuclear maturation rate was defined as the number of oocytes at the MII 
stage per the total number of oocytes subjected to IVM. Oocytes with 
fragmented or dispersed chromatin were designated as degenerated 
[18]. 

2.4. Lipid content assessment 

After IVM, the COCs were denuded with hyaluronidase for all ana-
lyses. The oocytes from each experimental group were fixed in 4% 
paraformaldehyde solution for 40 min and stored in phosphate-buffered 
saline at 4 ◦C. Structures were stained with Oil Red O solution. Oocytes 
were washed in a 50% ethanol solution (50%ethanol and 50% distilled 
water) for 2 min. Then, stained for 15 min in 2.45 mg/ml Oil Red O 
solution 70%/30%destilled water, and washed three times, for 5 min 
each, in 50% ethanol solution. After, they were kept for 5 min in distilled 
water before being evaluated. The images were captured with a phase 
contrast microscope (Nikon Eclipse Ci, Nikon Corporation, Tokyo, JP) 
connected to a camera (Pylon viewer, Basler AG, Exton, PA, USA). 
Analysis was performed using ImageJ software (NIH, USA) for the per-
centage of stained area from total oocyte cytoplasm on a two- 
dimensional image [13]. 

2.5. Mitochondrial activity 

Denuded oocytes were incubated for 30 min in the dark with 0.5 nM 
of Mitotracker Green (Invitrogen™, Waltham, MA, USA - M7514). After 
incubation, they were washed in PBS supplemented with 0.1% BSA, 
placed on a slide, covered with a coverslip, evaluated under a fluores-
cence microscope (Nikon Eclipse Ci, Nikon Corporation, Tokyo, JP) and 
the images were captured (Pylon viewer, Basler AG, Exton, PA, USA). 
Average fluorescence intensity per oocyte was measured (arbitrary 
units, A.U.) using Image J software (NIH Image, Bethesda, MD, USA) and 
normalized to the background average intensity. 

2.6. Measurement of glutathione (GSH) and reactive oxygen species 
(ROS) levels 

Following the manufacturer’s instructions, the measurement of the 
intracellular ROS and GSH levels was carried out by using 2′,7′-dichloro- 
dihydro-fluorescein diacetate (H2DCHFDA, Invitrogen™, D399), and 4- 
chloromethyl-6,8-difluoro-7-hydroxycoumarin (CMF2HC, Cell Tracker 
Blue, Invitrogen™, C12881) that detect intracellular ROS and GSH 
levels as green and blue fluorescence, respectively. Groups of oocytes 
from each experimental group (CONTROL or MIX) were incubated in the 
dark for 30 min at 38.5 ◦C in an atmosphere with 5% CO2 in PBS-BSA 
containing 10 μM H2DCFDA and 10 μM Cell Tracker Blue. Then, they 
were washed in PBS-BSA, and the images were evaluated under a fluo-
rescence microscope (Nikon Eclipse Ci, Nikon Corporation, Tokyo, JP) 
with UV filters (460 nm for ROS and 370 nm for GSH) and captured 
(Pylon viewer, Basler AG, Exton, PA, USA). Average fluorescence in-
tensity per oocyte was measured using Image J software (NIH Image, 
Bethesda, MD, USA) and normalized to the background average in-
tensity. Fluorescence analysis was performed in the same was as 
described above. 

2.7. Gene expression 

Oocytes from each experimental group were frozen dry in identified 
cryotubes free of RNase and DNase at – 196 ◦C until molecular analysis. 

The expression of SDHA, HSP70 GDF9, BMP15, ZAR-1, PRDX1, SIRT1, 
and SIRT3 genes was evaluated using quantitative PCR (qPCR) associ-
ated with reverse transcription. Total RNA was extracted from three 
pools of 10 oocytes per treatment (CONTROL and MIX) using the RNeasy 
Micro Kit (Qiagen Inc., Valencia, USA) obtained in two replicates. RNA 
extracted from each pool was quantified using a spectrophotometer 
(Nanodrop Lite, ThermoFisher Scientific, Wilmington, DE, USA). 

For reverse transcription, the SuperScript IV Reverse Transcriptase 
(Invitrogen, Carlsbad, CA, USA) was used for all samples in the same 
RNA concentration, and the reverse transcription reaction was per-
formed in a two-step mix. Reactions (20 μL total volume) were prepared 
using a mixture of 10 μL of GoTaq® qPCR Master Mix (2X) (Promega, 
Madison, WI, USA), 0.1 μM primers (Table 1), nuclease-free water, and 
reverse transcribed cDNA (0.5 μL). Negative controls, comprising the 
PCR reaction mixture without nucleic acids, were also run with each 
group of samples. Template cDNA was denatured at 95 ◦C for 15 min, 
followed by 40 cycles of denaturation at 94 ◦C for 15 s, primer annealing 
at 60 ◦C for 30 s, and elongation at 72 ◦C for 30 s. For each reaction, 
primer efficiency was calculated using LinRegPCR software. The primer 
efficiency average was: 1.88 to SDHA (Succinate Dehydrogenase Com-
plex Flavoprotein Subunit A); 1.85 to HSP70 (70 Kilodalton Heat Shock 
Protein); 1.85 to GDF9 (Growth Differentiation Factor 9); 1.87 to BMP15 
(Bone Morphogenetic Protein 15); 1.86 to ZAR1 (Zygote Arrest 1); 1.88 
to PRDX1 (Peroxiredoxin 1); 1.88 to SIRT1 (Sirtuin 1); 1.85 to SIRT3 
(Sirtuin 3); 1.91 to YWHAZ (Tyrosine 3-monooxygenase/tryptophan 5- 
monooxygenase activation protein zeta); and 1.90 to ACTB (Beta-actin). 
Relative quantification was performed in triplicate using qPCR (Applied 
Biosystems QuantStudio 3, ThermoFisher Scientific, Wilmington, DE, 
USA). Relative quantification was performed by the comparative Ct 
method (2− ΔΔCt) using the REST 2008 software. The expression of each 
target gene was normalized using the geometric mean of YWHAZ and 
ACTB values. The values of the Pearson correlation coefficient observed 
for the YWHAZ (r2 = 0.945) and ACTB (r2 = 0.948) genes demonstrate 
stability (p < 0.01) of these reference genes using the BestKeeper – Excel 
tool according to the methodology described by Pfaffl et al. (2004) [19]. 

2.8. Cryopreservation/warming and viability assessment 

Vitrification was performed according to Colombo and Luvoni 
(2020) [23] in five replicates after IVM treatment. Groups of five to eight 
COCs matured in vitro from each experimental group were equilibrated 
(TCM199 + 20% FBS with 7.5% EG and 7.5% DMSO) for 15 min and 
then, transferred to a vitrification solution (TCM199 + 20% FBS, with 
15% EG, 15% DMSO, and 0.5 M of sucrose), in a maximum time of 90 s; 

Table 1 
Details of primers used for the gene expression analysis (sequences and refer-
ences of the primers used to the PCR in real time of fresh oocytes from MIX and 
CONTROL groups).  

Gene Primer sequence Reference 

SDHA F: AACCTGATGCTTTGTGCTCTGC ENSBTAG00000046019 
R: TCGTCAACCCTCTCCTTGAAGT 

GDF9 F: CAGCCAGATGACAGAGCTTTGAG [20] 
R: CACTGATGGAAGGGTTCCTGCT 

BMP15 F: GCCTCGGATCTTAGGGCATC [20] 
R: TATGTGCCAGGAGCCTCTGA 

ZAR-1 F: CATCCGATGGGAAAGTGCCT XM_023252238.2 
R: GCTGTCACAGGATAGGCGTT 

PRDX1 F: CCCCACGGAGATCATTGCTT XM_003990035.5 
R: AATGGTACGCTTGGGGTCTG 

SIRT1 F: CGCCTTGCAATAGACTTCCC [21] 
R: GAATTTGTGACAGAGAGATGGTTG 

SIRT3 F: TGCTTCTGCGGCTCTACAC [21] 
R: TGTCTCCCAAAGAACACGA 

YWHAZ F: GAAGAGTCCTACAAAGACAGCACGC [22] 
R: AATTTTCCCCTCCTTCTCCTGC 

ACTB F: GCCAACCGTGAGAAGATGACT [21] 
R: CCCAGAGTCCATGACAATACCAG  
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and placed in a Cryotop® device (Kizato, Fuji, Japan) using a minimal 
volume. The device was immediately immersed in liquid nitrogen and 
stored until warming. 

For warming, the Cryotop® device was removed from liquid nitrogen 
and immersed in a sequence of three solutions of TCM199 + 20% FBS 
with decreasing concentrations of sucrose (1 M; 0.5 M; and 0 M) for 1 
min, 3 min, and 5 min at 38 ◦C. Viability assessment was evaluated in 
two ways: by the COC morphological quality and by Neutral Red 
(N4638) staining after incubation for 30 min at 15 μg/mL. 

Regarding morphological quality, COCs were evaluated under a 
stereomicroscope (SMZ-800, Nikon®, Tokyo, Japan) and when pre-
senting regular morphology, homogeneous cytoplasm, and no signs of 
degeneration in the cytoplasm or cumulus cells were considered to be of 
good quality (Grade I or II); when presenting cytoplasm with signs of 
degeneration, irregular morphology, and rupture of the zona pellucida 
were considered unviable [24]. Neutral Red staining pattern was read as 
“viable” when the oocyte was stained (Fig. 3), or non-viable when the 
oocyte was not stained since it is selectively absorbed by lysosomes [25, 
26]. 

2.9. Statistics 

The nuclear maturation rate (MII) was evaluated by Fisher’s exact 
test. The viability rates (morphological and metabolic) measured after 
warming were also evaluated by Fisher’s exact test. In the first and the 
second assays (4 experimental groups) from the first experiment, the 
results regarding lipid content were submitted to ANOVA, and the 
Tukey-Kramer test was used for comparison among groups. In the third 
assay (2 experimental groups), results from lipid content were analyzed 
by unpaired Student’s t-test. Results from mitochondrial activity, GSH 
and ROS levels, and REDOX balance were also evaluated by unpaired 
Student’s t-test. Regarding cryopreservation, Fisher’s exact test was used 
to evaluate the results from metabolic and morphologic measurements. 
Analyses were performed in GraphPad INSTAT software Inc. (San Diego, 
CA, USA), at a significance level of 5%. 

3. Results 

3.1. Experiment 1 

3.1.1. IVM generates lipid accumulation in cat oocytes after 28 h 
To answer whether there is a process of lipid accumulation in the 

oocyte of domestic cats with advancing IVM time, the lipid content of 
oocytes was evaluated at 24, 28, and 32 h of IVM and compared with 
immature (GI) oocytes. The oocytes from GI (46.4%) had a lower (P <
0.05) lipid content compared to those of G28 (72.3%) and G32 (74.7%), 
and similar (P > 0.05) to 24 h (67.7%), although the lipid content had 
increased about 50% in the latter. Considering specifically the three IVM 

time points (24, 28, and 32 h), no difference (P > 0.05) was observed in 
lipid content (Fig. 4A and B). 

3.1.2. CLA can reduce oocyte lipid content during IVM 
After establishing the lipid accumulation significantly increased at 

28 h of IVM, this assay aimed to use lipid modulators to reduce the lipid 
accumulation. For that, oocytes were allocated into three experimental 
groups according to the lipid modulator tested: CONTROL, IVM without 
any modulator, CLA, FSK, LC, and submitted in IVM for 28 h. Regarding 
the lipid content, there was no difference (P > 0.05) among CONTROL 
(70.5%), FSK (72.0%), and LC (65.3%) groups. However, the CLA 
(49.2%) group presented a significant decrease (P < 0.05) in the lipid 
content compared to CONTROL and FSK as can be seen in Fig. 4C. 

3.1.3. Lipid modulation for multiple pathways (MIX) was more efficient in 
reducing oocyte lipid accumulation during IVM 

After finding that CLA had a more potent effect in reducing lipid 
content than the other modulators, we checked whether the combina-
tion of modulators would have an even more potent effect in this sense. 
There was a significant (P < 0.05) reduction in oocyte lipid content from 
the MIX (54.0%) when compared with the CLA (69.1%) group, showing 
that the combined use of lipid modulators was even more efficient in 
reducing lipid accumulation (Fig. 4D). 

3.2. Experiment 2 

After establishing a reduction in lipid content by the MIX group, the 
new experiment aimed to see the effect of this reduction on the matu-
ration rate, oocyte metabolism, gene expression, and viability post- 
cryopreservation. 

3.2.1. The combined use of lipid modulators (MIX) did not impact MII rates 
As can be seen in Table 2, there was no difference (P > 0.05) in MII or 

the degenerate rate at 28 h of IVM in the CONTROL and MIX groups. 

3.2.2. Mitochondrial activity was not affected by the MIX complex 
No difference (P > 0.05) was observed between CONTROL (1.00 ±

0.35 A U.) and MIX (1.19 ± 0.14 A U.) in mitochondrial activity as can 
be seen in Fig. 5A. 

3.2.3. GSH and ROS levels were highly impacted by the combined use of 
lipid modulators (MIX) 

Oocytes were evaluated and MIX presented higher (P < 0.05) levels 
of ROS (C:1.00 ± 0.16 vs M:6.84 ± 1.94 A U.) and GSH (C:1.00 ± 0.3 vs 
M:19.62 ± 4.61 A U.) when compared to CONTROL (Fig. 4). However, 
the redox balance (ROS/GSH) was greater (P < 0.05) in the CONTROL 
group (C:1.00 ± 0.20 vs M:0.26 ± 0.06 A U.)(Fig. 5B–D). 

Fig. 3. Illustration of Neutral Red Staining. (Left) Morphological viable COCs non submitted to Neutral Red Staining. (Right) Morphological viable COCs 
submitted to Neutral Red Staining. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.2.4. MIX complex downregulated the expression of evaluated genes 
related to oocyte metabolism and quality 

HSP70, GDF9, PRDX1, and SIRT1 were downregulated (P < 0.05) in 
the MIX group compared to CONTROL; and there were no differences 
between groups regarding SDHA, BPM15, SIRT3, and ZAR1 (Fig. 6). 

3.2.5. MIX complex improved oocyte viability after cryopreservation 
After warming, oocytes were morphologically evaluated and 

assessed for viability by Neutral Red (Table 3). According to the stain-
ing, the MIX complex presented a higher (P < 0.05) viability rate (73.4% 
vs 53.6%) after warming than CONTROL; and viability was also higher 
(P > 0.05) in the MIX group through morphological evaluation (72.8% 
vs 48.3%). 

4. Discussion 

Although some studies reported that lipids can accumulate during 
IVM in other species, such as cattle [8,9], studies regarding the changes 
in the lipid content or profile in cats are scarce. Considering that lipid 
accumulation has been associated with a greater sensitivity to cryo-
preservation [14,27], lipid modulation could be an important tool in the 
IVM of domestic cats since this animal model presents relevance in the 

conservation scenario. 
Lipid uptake significantly influences cell metabolism [28] and it is 

well known that domestic cat oocytes already present a naturally high 
content of intracellular lipids [6]. So, this study investigated the oocyte 
lipid accumulation during IVM, and according to the results, it increased 
at 28 h in our experimental conditions. Even so, there is a lack of 
knowledge regarding the meaning of this increase in this species. 
Although the lipid accumulation during IVM seems to be abnormal in 
species such as cattle, since oocytes matured in vivo do not present this 
accumulation [8], the role of this accumulation in cats remains 
unknown. 

In the bovine model, a family of lipid-binding proteins (FABP) that 
transport lipids intra and extracellularly during IVM was already re-
ported as a mechanism that explains lipid accumulation in this phase 
[9]. Considering the possibility of a pathway that also leads to an 
abnormal accumulation in cats, our next step was to modulate the lipid 
content through three different agents. As a result, we observed that CLA 
was the only lipolytic agent used that created a significant reduction in 
total oocyte lipid content during IVM. CLA can modulate intracellular 
lipids through transcription mediators such as transcription factors 
sterol-regulatory element binding protein [14], and it already proved to 
be effective in reducing the lipid content in a time-dependent manner in 
pig oocytes [12], that also present a great amount of intracellular lipids 
[7]. 

Interestingly, FSK and LC did not reduce the total oocyte lipid con-
tent. FSK is widely used in the IVM of several species as a cAMP 
modulator acting in nuclear maturation, keeping oocytes in meiotic 
arrest [3,29], and although its role as a lipolytic modulator proved to be 
efficient in reducing lipid content of pig oocytes during IVM [12,30], it 
did not affect the lipid content of cat oocytes in the current study. FSK is 
a stimulator of adenylyl cyclase (AC), an enzyme that synthesizes cAMP. 
When FK activates AC, keeping the cAMP levels, it also induces the 
activation of cAMP-dependent protein kinases, which activate intracel-
lular lipases via phosphorylation [3]. However, there is evidence that 
FSK stimulates the resumption of meiosis in cat oocytes [15], that is, an 
opposite effect to that reported in other species [29,31], and considering 

Fig. 4. Lipid content. (A) Illustration of oocyte lipid content after Oil red staining in immature oocytes and during 24, 28, or 32h of IVM. (B-D). Graphs showing the 
total oocyte lipid content according to the experiment: (B) among 24, 28, 32 h of IVM and immature oocytes; (C) among conjugated linoleic acid [CLA], forskolin 
[FSK], L-carnitine [LC], and CONTROL groups; and (D) between conjugated linoleic acid [CLA] and MIX [CLA + FSK + LC]. Different letters show statistical dif-
ference (p < 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Effect of in vitro maturation (IVM) treatment (MIX or CONTROL) on nuclear 
maturation of good quality (Grade 1 and 2) oocytes obtained from ovaries after 
elective surgeries in the domestic cat species.  

IVM GROUP GV(GVB) MI MII DG TOTAL 

%/(n) %/(n) %/(n) %/(n) 

CONTROL 8.4% (8) 36.8% (35) 45.2% (43) 9.4% (9) 95 
MIX 10.2% (8) 46.1% (36) 41.0% (32) 2.5% (2) 78 

n, number of oocytes evaluated; GV, germinal vesicle; GVB, germinal vesicle 
breakdown; MI, Metaphase I; MII, Metaphase II; DG, degenerated. (Fisher’s 
exact test, at P > 0.05). 
173 oocytes were obtained in four replicates. 
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the lipid pathway of FSK, this could be an answer for the result found in 
this study. 

LC was not able to reduce the total lipid content in the cat oocyte, 
however, it can modify the lipid droplets in pigs [32] and their distri-
bution in bovine oocytes during IVM [33]. Even so, LC is considered an 

important co-factor in IVM since it can improve oocyte quality via both 
β-oxidation increasing and reducing oxidative stress [34]. Then, we 
checked if the MIX complex could be even more effective in reducing 
lipid content than only the CLA, and according to the results, its use 
during IVM was more efficient in reducing oocyte lipid accumulation of 

Fig. 5. Oocyte metabolism. Graphs showing the relative fluorescence intensity levels (Mean ± SEM of arbitrary units) regarding (A) mitochondrial activity, the 
intracellular levels of (B) reactive oxygen species (ROS) and (C) glutathione (GSH), and the (D) balance redox between oocytes derived from MIX and CONTROL IVM 
treatments. Different letters show statistical differences (p < 0.05). 

Fig. 6. Gene Expression. Gene expression of 70 kilodalton heat shock protein (HSP70), peroxiredoxin 1 (PRDX1), succinate dehydrogenase complex flavoprotein 
subunit A (SDHA), sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), growth/differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), zygote arrest 1 (ZAR1) on 
oocytes derived from MIX and CONTROL IVM treatments. Different letters show statistical differences (p < 0.05). 
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cat oocytes. Of note, the association of CLA, FSK, and LC was already 
tested during IVM in cattle with positive results regarding lipid content 
reduction, however, it negatively impacted embryonic development 
[13]. 

Due to the lack of knowledge of the meaning of the accumulation in 
the cat oocyte and how the modulation of this accumulation can impact 
the oocyte, the next steps aimed to answer how the reduction reached in 
the total lipid content interferes with oocyte development competence, 
metabolism, and cryosurvival. Oocyte maturation is associated with 
rapid remodeling of the oocyte lipid content, still, the signaling path-
ways in which lipid metabolism gives support to oocyte maturation are 
not completely known [35]. Besides the difference in the lipid content 
between our two experimental groups (MIX and CONTROL), no differ-
ence was observed in the nuclear maturation rates. The mechanism 
involved in the lipid composition changes and in how they can signal to 
release the oocyte from the meiotic arrest to reinitiate meiosis still need 
to be clarified [35], however, the results suggest that lipid content 
reduction seems to not interfere in the cat oocyte nuclear maturation. 

Both growth/differentiation factor 9 (GDF9) and bone morphoge-
netic protein 15 (BMP15) have been associated with oocyte quality 
because they have an important role in oocyte maturation since they are 
detectable in oocytes in early follicles stages [36–38]. GDF9 was 
downregulated in the MIX group compared to CONTROL, and although 
there was no difference in our results regarding the expression of 
BMP15, the secretion of these two growth factors by oocytes and the 
ability of an oocyte to regulate its own environment through these fac-
tors, which are also important for cytoplasmic maturation, are essential 
considering its future development [37]. Based on that, the results 
suggest that although the combined use of lipid modulators and the 
reduction in the lipid content did not interfere with nuclear maturation 
rates, we could not rule out the possibility of an impact on the oocyte 
development competence. 

To understand better the impact of reducing the lipid content 
through the combined use of modulators, we also checked the effect of it 
on oocyte metabolism. ROS are naturally formed during cellular meta-
bolism; however, their levels are controlled by enzymatic and non- 
enzymatic antioxidants. When the production of ROS overcomes the 
antioxidant capacity, it generates oxidative stress (cellular damage 
through lipid peroxidation with DNA and protein damage) [34,39]. Our 
results showed a 5x increase in ROS levels and 18x in GSH levels in the 
MIX group compared to CONTROL. Both LC and CLA have antioxidant 
properties [34], and several studies reported the use of the former 

during IVM as a powerful antioxidant agent able to reduce ROS levels 
and increase GSH levels in different species [40–43]. In the current 
study, the modulators present in the MIX group can explain the increase 
in the GSH levels, still, their use seemed to influence ROS levels as well. 
It is worth mentioning that besides ROS levels being higher in the MIX 
group, the redox balance (ROS/GSH) was lower (P < 0.05) than CON-
TROL, which suggested that MIX positively impacted the metabolism, 
keeping the antioxidant response higher than ROS. 

However, peroxiredoxins and HSPs are proteins involved in defense 
against oxidative stress [44,45] and the expression of both PRDX1 and 
HSP70 was downregulated in the MIX group. There are reports sug-
gesting that the lower abundance of these transcripts after IVM can 
implicate in oocytes more sensitive to stressful conditions, which may 
lead to low developmental competence [46]. Even so, it is important to 
consider that if these genes are involved in the defense against oxidative 
stress, the lower expression in MIX compared to CONTROL can mean 
that oocytes are been less challenged regarding the oxidative conditions, 
and the less oxidative stressful in vitro environment can lead to a reduced 
need for the expression of the antioxidative defense. 

In turn, no difference was found regarding mitochondrial activity 
between groups. The use of oocyte intracellular stores for energy pro-
duction during IVM is relevant in species with high levels of stored lipids 
[5,34]. β-oxidation during IVM seems essential for subsequent devel-
opmental competence and LC increases beta-oxidation, taking fatty 
acids from the cytosol into mitochondria [34], however, the mito-
chondrial activity in the MIX group was not different from CONTROL. 
Taking together the expression of sirtuins, the MIX group presented a 
downregulation in SIRT1 and there was no difference between groups 
regarding SIRT3. Sirtuins are a family of NAD + -dependent deacylases 
that regulate several physiological processes. This family has seven 
isoforms in which SIRT1 is located in the nucleus and can be trans-
located to the cytoplasm; and SIRT3 is located in the mitochondria and 
can be translocated to the nucleus under stress [47]. SIRT3 is able to 
control the expression of many mitochondrial proteins and influence 
major mitochondrial functions [48,49]. In addition, SIRT1 is involved in 
the regulation of mitochondrial biogenesis and mitophagy [50]. The 
results in the expression of SIRT3 corroborate with mitochondrial ac-
tivity results in which no difference was found between the two exper-
imental groups. Considering that SIRT1 can promote mitochondrial 
biogenesis in conditions of energy deficiency and has a significative role 
in triggering the dead or replacing the damaged mitochondria [50], its 
downregulation in the MIX group can suggest that this group was able to 
maintain a better metabolism balance than CONTROL. 

Lastly, based on the association of lipid accumulation with sensitivity 
to cryopreservation [14,27] we tested the effect of the combined use of 
lipid modulators on cryopreservation. Although there is no consensus on 
the real impact of lipid accumulation on the cryotolerance of oocytes 
and embryos [51,52], the results in this current study showed that the 
reduction in the lipid content observed in the MIX group generated a 
higher viability rate (P < 0.05) after cryopreservation. On the other 
hand, this same association of modulators was able to reduce the lipid 
content of oocytes but negatively impacted embryonic development and 
embryo cryosurvival rates in cattle [13]. The differences in the cry-
osurvival due to the lipid content may be species-specific and the 
knowledge regarding the lipid profile pattern of the domestic cat oocyte 
and the changes in this profile caused by lipid modulation may be the 
key factor for understanding the results found in the current study. 

Some studies reported that LC during IVM improved buffalo oocyte 
quality after vitrification by altering the phospholipid composition of 
vitrified oocyte membranes [53] and there is also evidence that CLA 
during IVM was able to improve oocyte cryosurvival in cattle [54]. In 
addition, also in cattle, FSK softened the effect of cryopreservation and 
developmental abnormalities observed in GV-oocytes during IVM after 
warming [55]. There is considerable evidence that these modulators are 
involved with improvements regarding oocyte cryopreservation, how-
ever, some of them can be related to the antioxidant defense [34] and 

Table 3 
Effect of in vitro maturation (IVM) treatment (MIX or CONTROL) on morpho-
logical and metabolic viability post cryopreservation of cat oocytes.  

IVM 
system 

Status n Metabolic 
Viability rate 
(%/n) 

n Morphological 
viability rate (%/n) 

CONTROL Fresh 77 87.0% (67) aA – – 
Vitrified 123 53.6% (66) bA 124 48.3% (60) A 

MIX Fresh 69 97.1% (67) aA – – 
Vitrified 113 73.4% (83) bB 114 72.8% (83) B 

384 oocytes obtained in three replicates; n: Number of oocytes evaluated. 
MIX: IVM media with conjugated linoleic acid, forskolin, and L-carnitine. 
The “metabolic viability rate” was calculated considering the Neutral Red 
staining pattern in which the oocyte was considered “viable” when its cytoplasm 
was stained, or “non-viable” when it was not stained; the “morphological 
viability rate” was calculated based on morphological quality. Oocytes pre-
senting cytoplasm with signs of degeneration, irregular morphology, and 
rupture of the zona pellucida were considered “non-viable”. 
The results from morphological viability after warming (Grade I and II) are 
indicated only in the vitrified groups. 
Within a column, values with different superscripts differ significantly by 
Fisher’s Test (P < 0.05). 
a,b differ between the status (fresh or vitrified) in the same IVM system and A,B 
differ between the IVM system considering the status. 
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reports in cats remain scarce. 
It is worth mentioning that although the viability post cryopreser-

vation seems to be preserved by reducing the through the modulators, 
there are possible impacts created on the metabolism that can affect 
oocyte developmental competence, and an IVF would be an important 
tool to provide more information in this regard. 

5. Conclusion 

It was concluded that IVM can cause lipid accumulation in cat oo-
cytes after 28 h of duration and that the combined use of lipid modu-
lators (CLA + FSK + LC) that act for multiple pathways can reduce their 
lipid content. In addition, this lipid cocktail seems to improve viability 
after cryopreservation and to affect the oocyte metabolism, assessed by 
different fluorescent probes and gene expression. Such changes and their 
impact on the oocyte development competence still need to be better 
understood in the cat biological model. 
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Buff S, Maillard V, Schibler L, Salvetti P, Elis S. Lipid profile of bovine grade-1 
blastocysts produced either in vivo or in vitro before and after slow freezing 
process. Sci Rep 2021;11:11618. https://doi.org/10.1038/s41598-021-90870-8. 

[53] Xu HY, Geng SS, Li TT, Fu Q, Lu SS, Liang XW, Lu YQ, Zhang M, Yang XG, Lu KH. 
Maturation of buffalo oocytes in vitro with acetyl-L-carnitine improves 
cryotolerance due to changes in mitochondrial function and the membrane lipid 
profile. Reprod Fertil Dev 2019;31:386–94. https://doi.org/10.1071/RD18102. 

[54] Matos JE, Marques CC, Moura TF, Baptista MC, Horta AE, Soveral G, Pereira RM. 
Conjugated linoleic acid improves oocyte cryosurvival through modulation of the 
cryoprotectants influx rate. Reprod Biol Endocrinol. 201512; 13:60. https://doi. 
org/10.1186/s12958-015-0059-3.. 

[55] Ezoe K, Yabuuchi A, Tani T, Mori C, Miki T, Takayama Y, Beyhan Z, Kato Y, 
Okuno T, Kobayashi T, Kato K. Developmental competence of vitrified-warmed 
bovine oocytes at the germinal-vesicle stage is improved by cyclic adenosine 
monophosphate modulators during in vitro maturation. PLoS One 2015;10: 
e0126801. https://doi.org/10.1371/journal.pone.0126801. 

G.R. Leal et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.theriogenology.2012.11.011
https://doi.org/10.1016/j.theriogenology.2012.11.011
https://doi.org/10.21451/1984-3143-AR988
https://doi.org/10.21451/1984-3143-AR988
https://doi.org/10.3389/fcell.2022.814876
https://doi.org/10.1530/rep.0.1220829
https://doi.org/10.1530/rep.0.1220829
https://doi.org/10.1093/humupd/dmm040
https://doi.org/10.21451/1984-3143-AR2018-0082
https://doi.org/10.1016/j.prostaglandins.2022.106666
https://doi.org/10.1016/j.theriogenology.2012.02.027
https://doi.org/10.1007/s10815-015-0430-5
https://doi.org/10.1111/rda.12682
https://doi.org/10.1111/rda.12682
https://doi.org/10.1111/rda.12946
https://doi.org/10.1002/jcp.10119
https://doi.org/10.1002/jcp.10119
https://doi.org/10.1089/ars.2005.7.768
https://doi.org/10.1089/ars.2005.7.768
https://doi.org/10.5935/1518-0557.20180084
https://doi.org/10.1016/j.arr.2023.101936
https://doi.org/10.1016/j.arr.2023.101936
https://doi.org/10.1016/j.cell.2016.10.016
https://doi.org/10.1080/13880209.2022.2037664
https://doi.org/10.14348/molcells.2016.2318
https://doi.org/10.14348/molcells.2016.2318
https://doi.org/10.1016/s0093-691x(01)00675-6
https://doi.org/10.1016/s0093-691x(01)00675-6
https://doi.org/10.1038/s41598-021-90870-8
https://doi.org/10.1071/RD18102
https://doi.org/10.1186/s12958-015-0059-3
https://doi.org/10.1186/s12958-015-0059-3
https://doi.org/10.1371/journal.pone.0126801

	Lipid modulation during IVM increases the metabolism and improves the cryosurvival of cat oocytes
	1 Introduction
	2 Material and methods
	2.1 Experimental design
	2.1.1 Experiment 1
	2.1.2 Experiment 2

	2.2 COCs collection and selection
	2.3 IVM and nuclear maturation assessment
	2.4 Lipid content assessment
	2.5 Mitochondrial activity
	2.6 Measurement of glutathione (GSH) and reactive oxygen species (ROS) levels
	2.7 Gene expression
	2.8 Cryopreservation/warming and viability assessment
	2.9 Statistics

	3 Results
	3.1 Experiment 1
	3.1.1 IVM generates lipid accumulation in cat oocytes after 28 h
	3.1.2 CLA can reduce oocyte lipid content during IVM
	3.1.3 Lipid modulation for multiple pathways (MIX) was more efficient in reducing oocyte lipid accumulation during IVM

	3.2 Experiment 2
	3.2.1 The combined use of lipid modulators (MIX) did not impact MII rates
	3.2.2 Mitochondrial activity was not affected by the MIX complex
	3.2.3 GSH and ROS levels were highly impacted by the combined use of lipid modulators (MIX)
	3.2.4 MIX complex downregulated the expression of evaluated genes related to oocyte metabolism and quality
	3.2.5 MIX complex improved oocyte viability after cryopreservation


	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


